
Representative examples of Problem solving strategies adopted in Teaching Learning

INDEX

SR NO	Event	Document
	Report on Industry Defined Problem Solving	View Report
1.	Competition	
	Participation in Competitions	View Summary
2.		
3.	Problem based learning included in curriculum	View Summary

Report on Industry Defined Problem Solving Competition

Start Day and Date: 1.1/04/2022 (Monday) to 13/04/2022 (Wednesday)

Time: 11:00am- 2:00pm

Organized for: Students from All Pharmacy Colleges (B.Pharm and M.Pharm)

No of participating teams: 31

Details of Mentors:

- 1. Dr Hitendra Mahajan
- 2. Dr Namdeo Jadhav
- 3. Dr Suresh Sudke
- 4. Dr Sanjeevani Deshkar
- 5. Dr Smita Pimple

Details of Industry Panel: (Zuventus Healthcare Ltd)

- 1. Dr Mukesh Shinde
- 2. Dr Krishna Kinage
- 3. Mr. Anil Gadhe

Inauguration was held at 11:30am on 11th April. Problem statement was be disclosed by the industry panel during inauguration. A panel of mentors was introduced to the participants so that participants could approach any of these mentors for guidance. They were allowed to refer any literature available to them. Participants were asked to submit a power point presentation of maximum 7 slides till 12 noon on 12th April as their solution to the assigned problem. On 12th April submitted solutions by participants were screened to select nine finalists. On 13th April at 11:00am the finalists presented their solution online which was evaluated by the industry panel. Time allotted to each team was 7 minutes followed by questions-answers. The finalist were provided with team code and had to deliver their solution without disclosing their identity.

Problem statement: How can the solubility/dissolution of BCS class-IV drug be increased. rovide the techniques to increases the dissolution of hydrochlorothiazide12.5 mg (HCTZ) tablet

Evaluation criteria :

Scientific principles (25marks) Feasibility of commercial scale manufacturing (25marks) Cost effectiveness (25marks)

Presentation skills (25 marks) with the total of 100 marks

Aditi Parde, Mayuri Gawate, Reshma Mate and Suraj Gurav Runner Teams

Shriram Thorat and Sanika Meghal
 Shaunak Paithankar, Jidnyasa Jain and Adnan Tamboli

The winning team was given a cash prize of Rs 10,000/- and Runner up prize of Rs 5,000/- was divided in two teams divided in two teams.

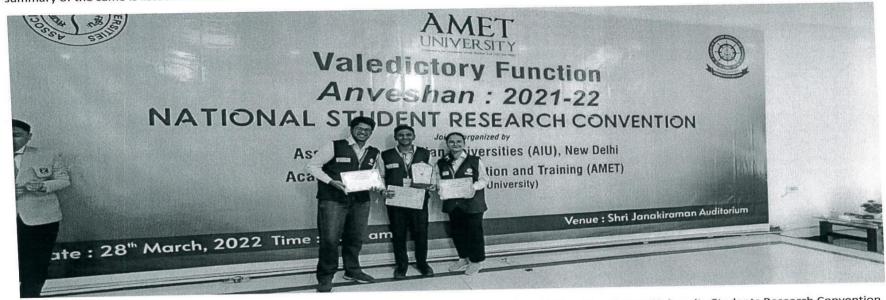
Co-ordinators :

thealeskar Mrs Amruta N. Avalaskar

Dr Rahul & Padalkar

Dr Ashwini Madgulkar Principal Alsonia Chilege of Pharmacy #ung-1

Principal

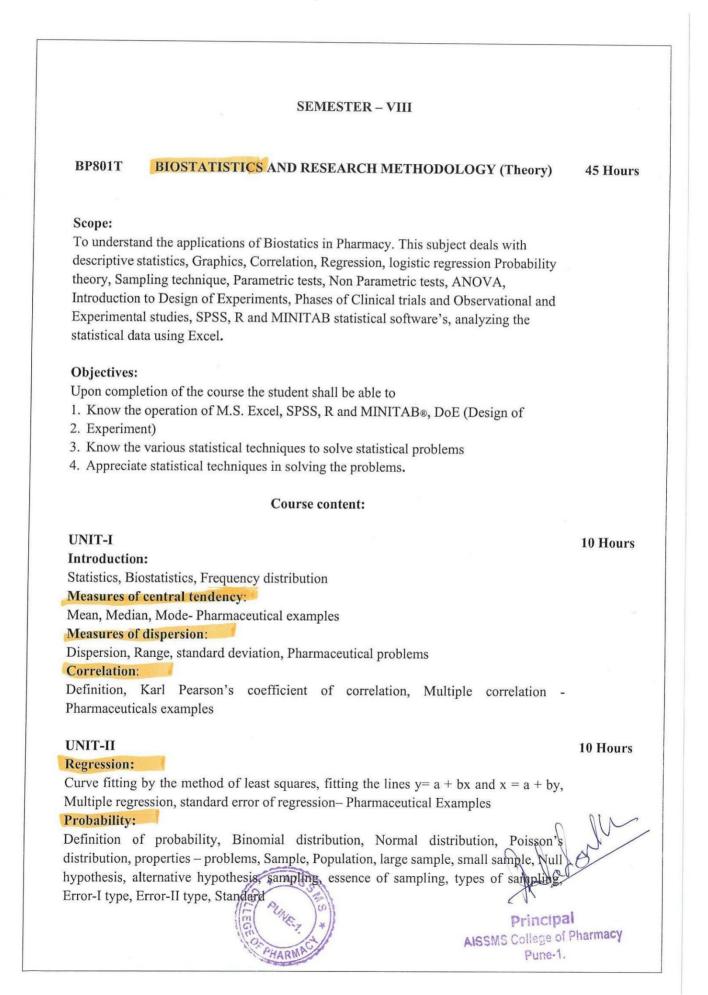

AISSMS College of Pharmacy Pune-1.

Back to index

Representative example of Participation in Competitions

STUDENTS ACHIEVEMENTS 2021-22

Students of our college has participated in various State and National Level Competitions and shown excellent performance to bag various prizes. A summary of the same is listed herewith.



Amey Gavaskar, Faizan Mujawar and Gargi Nikam won the FIRST cash prize of Rs. 50,000/- at National Level Inter University Students Research Convention, Anveshan 2021-22.

Back to index

Problem based learning included in Curriculum

error of mean (SEM) - Pharmaceutical examples

Parametric test:

t-test(Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference

UNIT-III

Non Parametric tests:

Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test Introduction to Research:

Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism

Graphs:

Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph

Designing the methodology:

Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases.

UNIT-IV

Blocking and confounding system for Two-level factorials

Regression modeling:

Hypothesis testing in Simple and Multiple regressionmodels

Introduction to Practical components of Industrial and Clinical Trials Problems:

Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Online Statistical Software's to Industrial and Clinical trial approach

UNIT-V

Design and Analysis of experiments:

Factorial Design:

Definition, 2², 2³ design. Advantage of factorial design

Response Surface methodology:

Central composite design, Historical design, Optimization Techniques

Recommended Books (Latest edition):

- 1. Pharmaceutical statistics- Practical and clinical applications, Sanford Bolton, publisher Marcel Dekker Inc. New York.
- 2. Fundamental of Statistics Himalaya Publishing House- S.C.Guptha
- 3. Design and Analysis of Experiments –PHI Learning Private Limited, R. Pannerselvam,
- Design and Analysis of Experiments Wiley Students Edition, Douglas and Montgomery

Principal AISSMS College of Pharmacy Pune-1.

07 Hours

08 Hours

10 Hours

Subject: Pharm Practice Class: Final Year B.Pharm. Sem 7 Staff Dr. Tina Saldanha

For CA2, The class was divided into teams. Each team was assigned a statistical test/topic as below. The students had to read on it and present to the class, if applicable, a research article in which the given test was employed was also explained.

Instructions to the class was as follows

Dear all, please note the following for CA2

It is a group assignment

Only one person will present for a max of 15mins but all will submit a write up of the activity

Roll no 1-10 will prepare topic 1 on the CA 2 list and so on.

Feedback will be taken to ensure that all members participated in the activity

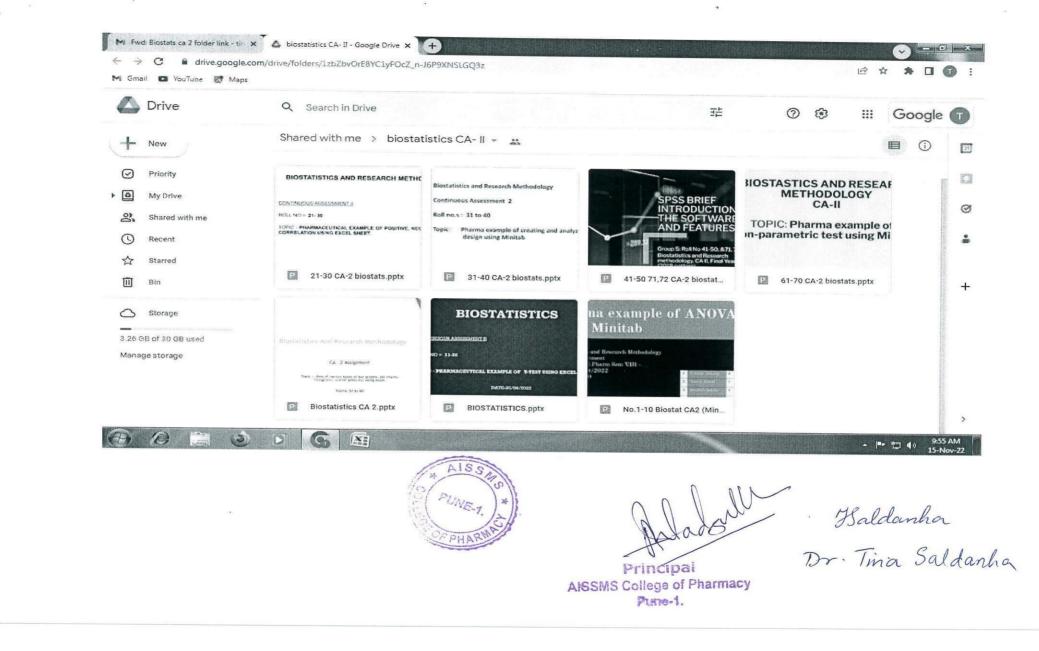
1) Pharma example of ANOVA using minitab

2) Pharma example of t test using excel sheet

3) Pharma example of positive negative and no using excel sheet or minitab

4) Pharma example of Creating and analysing factorial design using minitab

5) SPSS brief introduction to the software and features


6) Use of various types of bar graphs, pie charts histograms, scatter plots etc using excel

7) Pharma example of a non parametric test using minitab/SPSS

Baldanha Dr. Tinà Saldanha

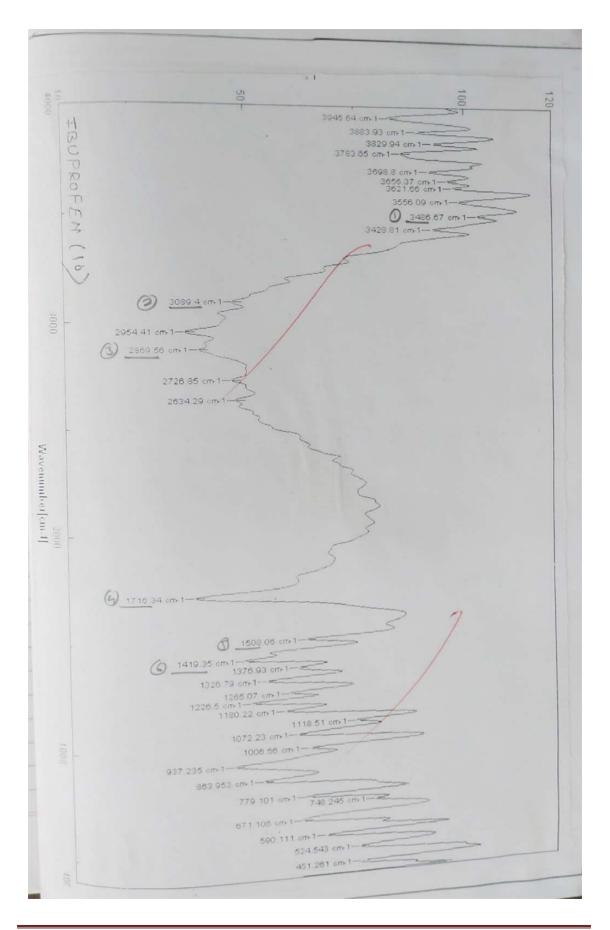
Learn by doing. Topics were already done in class... Students ability to create material understand and express (team work) was evaluated.

BP705P INSTRUMENTAL METHODS OF ANALYSIS (Practical)

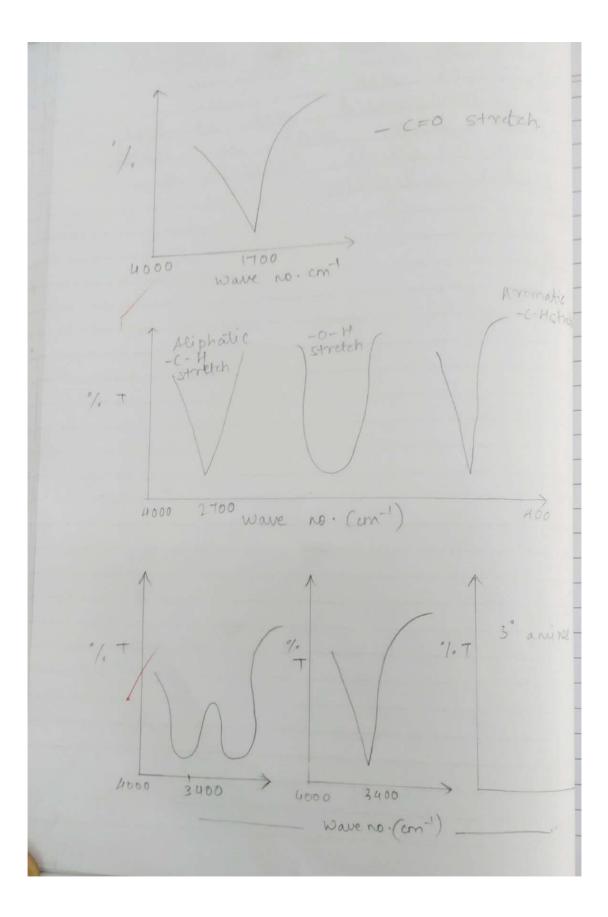
- 1. Weights and measures and pharmacopoeia in analysis
- 2. Determination of absorption maxima and effect of solvent on absorption maxima of organic compounds
- 3. Assay of Drug product as per IP (Assay of Paracetamol tablet by UV-Spectrophotometry)
- 4. Assay of Drug product by Calibration curve method
- 5. Assay of any drug/drug product by colorimetry.
- 6. Simultaneous estimation of multicomponent formulation by UV spectroscopy (SE/Q analysis)
- 7. Estimation of drug by fluorimetry
- 8. Study of quenching of fluorescence
- 9. Determination of sodium and potassium by flame photometry
- 10. Separation of amino acids by paper chromatography
- 11. Separation of sugars by thin layer chromatography
- 12. Separation of plant pigments by column chromatography
- 13. Demonstration of HPLC instrument
- 14. Demonstration of FTIR instrument
- 15. Interpretation of spectra of organic compounds by IR spectroscopy as per pharmacopoeia

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp
- 8. Quantitative Analysis of Drugs by D. C. Garrett
- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. HPLC by P.D.Sethi
- 11. HPTLC by P.D. Sethi
- 12. Spectrophotometric identification of Organic Compounds by Silverstein



Jall


Principal AISSMS College of Pharmacy Pune-1.

AY-2022-2023

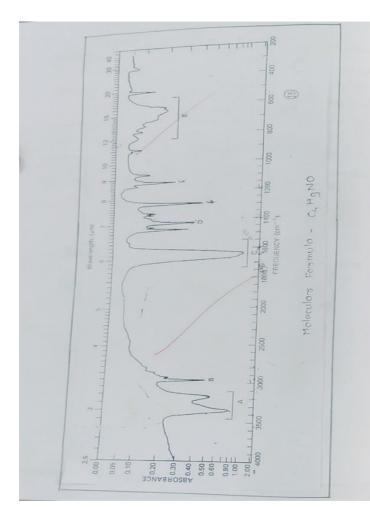
EXPERIMENT NO 15 Page: 38 () DeDs-111/2022 AIM-Interpretation of spectra of organic compounds by Tk spectroscopy as per pharmacopoeia REQUIREMENTS-INSTRUMENTS - IK spectrophotometer Shimadzu 00344 Jasco FT THEORY -APPLICATION -→ Identification of sample. → confirming the identify It has major application in Quantitative analysis 4 minor quantitative application. Ctuiding steps to interpret IR spectra & identify compound HID/IHD → Index of Hydrogen deficiency HID = (2W - X + Y + 02 + 2)2 W = No. of carbon X = No. of Hydrogen + Halogen Y = No. of Mitrogens Z = No. of oxygens.

AISSMS COP /NAAC 2nd CYCLE/SSR/CRITERIA 2 11

Page : 40 Date : / / -c=0 absent -OH present $\rightarrow -OH$ indication. > Around 3400 cm⁻¹ any peak > amine (peak of amine is different than that for cook + ok i.e. it is not sharp + not broad) > Amide - at 1700 cm⁻¹ sharp peak with a notch is obtained which is characteristic of amide. which is symmetrical t identical to each other. → Peak similar to peaks of anhydride obtained at 1350 cm⁻¹ & 1850 cm⁻¹ instead of at 1700 cm⁻¹ -> Nitro may be present > Sharp peak at 2100 cm -> nitrile onal group region is manual IR interpretation *only functional used for man * Aingerplinting region is compared hutr spectral from spectral library by coftmale.

Page: 3 9 () Date: / / > Look at 3000 cm⁻¹ 2 Below 3000 cm⁻¹ (towards -> indicates sight) aromatic Above 3000 cm⁻¹ (towards) indicates -left) aliphatic Look at area around 1700 cm⁻¹ sharp peak (deep peak) \rightarrow -(= 0 may be present) No peak \rightarrow - c=0 is absent → 2100 - 2300 cm⁻¹ - C=C- $-C \equiv N - 90^{\circ}/.$ chances If in formula N is there then - C=N is present → 2700 - towards left → H - stretch - C-H segion - D-H & may be -N-H & present - C-H aliphatic -> more than 3000 cm⁻¹ - (-H aromatic -> liss than 3000 cm⁻¹ Inverted Hill /Tongue shaped -> 0-4 stretch shamp strak -> c-H stretch. (around 3000cm) - c=0 + - OH peaks -> indicate - COOH

AY 2020-22
[problem Solving / Shucture Elucidation]
- to the postboly of Apaluali
Sub: Instrumental methods of Analycis.
sessional Il Practical Examinato
Name: Kshitija Ghanasham Abhang
ROII NO: 1
Date: 29/11/2021
Year : FNYr B. pharm BATCH : A
BAICH - 4
main experiment.
major experiment:
- Aug- in
* AISS ALL W Grandwy
Plan and A Laton Civilian
(2 AISSON ALADE COUNDUS)
Alissms College of Pharmacy
Pune-1.


Name: Kshitija Ghanasham Abhang 29/11/21 Roll No: 1

peaks at 3500 - 3300 cm ⁻¹ → N-H st 2 Ban 2850 - 3000 cm ⁻¹ → alipho - c-H	d s Ul'c	prediction Primary amine
$3000 - 3100 \text{ cm}^{-1} \rightarrow = C - H$ $1200 - 1350 \text{ cm}^{-1} \rightarrow C - N$ $700 - 800 \text{ cm}^{-1} \rightarrow \text{sin}$ single peak		→ 1,2-disubstituted compound.
	d molecul	au formula

Name: Kshihja Abhang 29/11/21 ROIL NO: 1 (4) Probable compound might contain: - Click - CH2 CGHG considering, IR spectra and HDT: CHA C8 HIO - M.F , CH3 - C6 H4 = aromatic CH3 --- $- C H_3$ 1,2-Dimethylbenkene Result & conclusion .. The HDI value is statisfied as well as molecular formula is satisfied. The most probable structure would be 1, 2 - Dimethylbenkene. CH3 - CH3 ortho substituted since fingurphint region shows peak (single) at 700 800 cm-0

Nome: Kshihja Abhang 29/11/21 2011 NO:1 (8) probable structure C7 HOO C₆H₅ → monosubstituted aromalic ring CH20 HO - OH Functional group -CH2 : There are no characteristic doublet peak at 2750 - 2850 cm -1 - aldehydes ruled out. The OH strech extends upto 3600 cm-1 -OH group is an alcohol group rather than -OH being directly attached to aromatic ring (Bhenol) : From, The HDI and molecular formula it could be stated that the probable structure would be. Benxyl alcohol: CH2-OH all AISS Principal AISSMS College of Pharmacy Pune-1.

AY-2018-2019

Back	s to	ind	ex

Exp	eriment No: 15			Date: 05-1	0-2018
Ain	a: To interpret the g	iven FTIR spectrum.			
Pro	cedure:-				
The	given IR spectrum	was observed in Fig	ure print regio	n and Group freque	ncy region. The
peal	cs in this region we	re assigned for corres	sponding vibra	ations and with the h	nelp of
nol	ecular formula prot	bable structure of con	npound was d	erived.	
Cal	culation of HID N	umber:			
HID	= 1/2 (2W - X + Y)	+ OZ + 2)			
Whe	ere, W = No. of te	etravalent atoms (Car	rbon)		
	X = No. of m	ionovalent atoms (Hy	ydrogen, Halo	ogen)	
	Y = No. of tr	ivalent atom (Nitrog	en)		
	Z = No. of di	valent atom (Oxyger	n)		
Obs	ervation Table Fo	ormat:-			
SN	Frequency	General	Vibration	Functional	Peak number in
	observed (cm ⁻¹)	Frequency Range	Assigned	Group	spectrum
				Derived	
1.	3200	3200 - 3000	NH2 Stretch	NH2 group	A
2.	2850	2800 - 3100	Ali C-H	Ali C-H Stretch	B
×-		1600 - 1800	C=0	c=o stretch	C
3.	16.50				